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LETTER TO THE EDITOR 

Homotopy and statistics: of spin and diagonals 

L S Schulman 
t Physics Department, Clarkson University, Potsdam, NY 13699.5820. USA 

Received 6 August 1993 

Abstract. The palh integral treatment of stahtics for identical particles is extended to the 
case where they possess spin by virtue of a continuous intemal wordinate, In this case the 
restriction to bosons or fermions begins at space dimemion two. The role of the ‘diagonal’ 
(points of coordinate wincidence) in these arguments is clxified. 

Because of the natural way that homotopy considerations enter the path integral, this 
framework has contributed to the understanding of boundary conditions, topology, 
and gauge fields and their role in producing well defined unitary evolution operators 
from Hamiltonians that do not possess unique self-adjoint extensions. In this article 
we address two issues related to the homotopy cum path integral arguments for 
quantum statistics. One of these is spin. As remarked in [I], [Z] deals only with scalar 
particles. Not only is this a severe physical restriction, but a more ambitious program 
is thereby thwarted, namely, the idea that there could come from this an intuitive or 
topological understanding of the spin-statistics theorem. (we do not achieve that goal 
here either and we expect relativistic considerations to be needed). The other issue we 
discuss is the exclusion in [2] of coincidence points (now known as the ‘diagonal’), and 
which has excited speculation over the years. It is comprehensively dealt with in [3]. In 
the treatment we give here, there is no ‘diagonal’ to exclude in the basic coordinate 
space; nevertheless, the treatment of [3] is of interest. 

Let a system have Hamiltonian H, Lagrangian L ,  and be defined on a coordinate 
space M. If M is homotopically non-trivial, the propagator ( x ,  y e M )  can be written 
[41 

where a labels homotopy classes, and the paths 5 in the second sum are in a. S is the 
classical action. Forx=y, a concise statement [S, 21 of the restriction on {$(a)) is‘that 
they provide an Abelian (additive) representation of the fundamental homotopy 

.In [Z], the coordinate space for N identical spinless particles is taken to be 
(91“ -A)/ - , where d is the dimension of space, A the ‘diagonal’, namely N-tuplets of 
d-vectors on which two or more d-vectors coincide, and the set is taken modulo the 
equivalence ‘I’ under which two N-tuplets are equivalent if they differ by 
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exchange(s). For d33, n, of this space is the permutation group whose only Abelian 
representations yield fermions and bosons. For d = 2, A, is the braid group and one has 
the possibility of parastatistics. This has been discussed under the rubric ‘anyons’ [6] .  

As a result of the subtraction of the diagonal in 121, there arose puzzles about 
identical particles-their collisions, overlap etc. To some extent these were semantic 
questions, since the behaviour of the wavefunction was never in doubt. With the 
coordinate space definition that we are about to give, there is nothing to subtract until 
one climbs to an appropriate covering space where the ‘subtraction’ takes care of 
itself. Once the diagonal shows up on the covering space, the arguments of 131 can be 
invoked. 

Our definition uses the fact that for truly identical particles it is meaningless to say 
who sits where. All that can be given is a list of positions. We therefore take as our 
coordinate space for N particles, sets of N d-vectors. For a set, the order is irrelevant 
and by definition the points are distinct-otherwise there would be N- 1 (or fewer) 
elements in the set. Call the space of these sets Q. Open sets of Q correspond to 
appropriate open sets in 

To build a propagator on Q we follow the prescription of [4]: Go to Q*, the 
covering space of Q, and project. For d>3, Q y  is precisely?.RdN-A. From this point 
one proceeds as in [2] and we do not elaborate. For d = 2 the covering space is larger, 
but again the missing diagonal makes its (non) appearance at this stage. 

One could also view this from the perspective of the fundamental domain for the 
coordinate space, for example N-tuples with a particular ordering. Here one would 
encounter the self-adjoint extension problem described in [3] and could use their 
techniques to reach appropriate conclusions on the behaviour of the wavefunction on 
the diagonal, a property specified in defining the domain of the (extended) 
Hamiltonian. 

Another way to approach the homotopylpath integral arguments is the use of 
gauge transformations involving functions that are single-valued on the covering space 
but multivalued on the fundamental domain [v. For the discrete transformation 
associated with permutation symmetry we adopt a step function, giving rise to 6 
function valued gauge fields. Consider the two-particle case for which one can adopt 
as fundamental domain{(r,,r,)E?.R61x,>x3 (withr=(x,y, 2)). On thecoveringspace 
the function n8(x, -x2 )  is single-valued. The resulting gauge field is zd(x, -&). This 
i s  not the same as the &function potential since the gauge field appears in the 
Lagrangian as zrS(x, -xz). In ordinary quantum mechanics this field presents no 
problem. On a line, U € % ,  the Hamiltonian becomes ( p - i z d ( ~ ) ) ~ D n ,  and from a 
solution @(U) of the Schrijdinger equation without the gauge field one can generate a 
solution with the gauge field by taking exp(i,&(u))@(u). 

The homotopylpath integrallstatistics arguments can be extended to particles with 
spin by finding a representation in which such particles have (one-component) 
wavefunctions taking values in %. This can be done by enlarging the coordinate space; 
the same approach that allows an ordinary path integral for spin allows conclusions 
about statistics to be drawn as well. 

For a single particle the appropriate coordinate space is ?.R3 X SO(3). Because of 
the non-trivial covering of SO(3) by SU(2) one can get integral or half integral spin 
[4, I]. (This approach can also be taken for relativistic particles [SI, hut because of 
complications in the Lagrangian we here discuss only the non-relativistic case.) If the 
single particle lives in two space dimensions, the ‘spin’ coordinate can take values in 

A metric is induced in the same way. 

SO(2). 
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For N particles the coordinate space consists of sets of N elements, each of the 
form (r ,R) ,  with r ~ 9 1 ~ ,  ReSO(3). The considerations of the previous section are 
complicated by the fact that the covering space has 2”! copies of the fundamental 
domain, the extra factor Z N  coming from the covering of SO(3) by SU(2). The 
‘diagonal‘, consists of those N-tuples in which (at least) two points map onto thesame 
E .  (Thus, for N=2, ( (r] ,  U), (rl ,  -U)) is on the diagonal.) 

To characterize the fundamental homotopy group we introduce more detailed 
notation. Let 

QN={{(5,,.  . . ,EN}(each(5=(r,R),withr~9ld&R~S0(d)l  d=2,3 .  
Again, to say that each set in the collection QN has N elements means in effect that its 
points are distinct objects. As above, QN is given a topology and metric from its 
embedding in (%d@SO(d))N. Let s ] k  be the exchange of El and Ek.  By an ‘exchange’ we 
mean an equivalence class of closed loops of the form {&(t), . . . , E N @ } ,  with &(t) = & 
f o r l f j ,  k, ~l(0)=~,,~k(0)=~r,~l(1)=~t,(5k(l)=~landarrangedin sucha waythat 
there are no coincidence points for OStG 1. For simplicity we discuss nl(QN) in terms 
of transformations on Q;. The effect of the transformation Su is 

((r1, Ut), ( r2r  UJ+((r2,  w, @I,  U,)) 

where UeSU(2) is in the covering space of SO(3). (For d = 2  the definition is 
essentially the same, but the covering space of SO(2) is 91. The distinctive feature of 
the d=2, spinless, case is that the names of the points exchanged does not specify the 
homotopy class. This does not effect our forthcoming discussion.) For the transforma- 
tions that arise from the SO(3) covering by SU(2) we use the notation Lk. Thus Lk is 
the transformation (rk, Uk)+(rk, -U,). It is immediate that 

Lksb=s,L,. (2) 

It is also clear that the Lk commute with one another as well as with S,, with m # k and 
E# k. (For the d = 2 case similar relations hold but the corresponding Lk sends 0, E 91 

For the d =  3 case, what we have called exchanges give rise to the symmetric group 
as a subgroup of nl(QN). The Abelian representations of this group define, as usual, 
either fermions or bosons. If we now consider representations of the larger group, for 
each Lk we could have a choice of representation by the two representations of 2,. For 
Z,= {-1, +1} and L E Z,, these representations are Do(L) = 1 or D,(L) = L.  However, 
from (2) we see that for all k s n  the same representation of 2, must be used. In this 
way our analysis obtains the desired results, namely, that one looks to the Abelian 
representations of Y N ,  yielding only fermions and bosons. As far as we can tell, there 
is, at this level, no restriction connecting the phases associated with spin and those for 
statistics. Presumably this would require a relativistic framework. 

For d = 2 ,  in the absence of an internal continuous coordinate the fundamental 
homotopy group is not the symmetric group on N objects. There are paths that 
exchange particles twice that do not reduce to null paths, and the fundamental group 
is the braid group. This can give rise to parastatistics. For the case we now consider 
there is an additional internal coordinate giving rise to the spin. With this degree of 
freedom, exchange paths can slide past each other-simply change the value of the 
internal coordinate when the space coordinates coincide. Spinning two-dimensional 
objects, where that spin arises from a continuous internal coordinate, thus lose the 

to e, + zn.) 
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possibility of parastatistics. They may, however, have a non-trivial phase under 2a 
rotation. 

Several physical systems have been considered candidates for the possession of 
anyon excitations. However, a spin degree of freedom for the relevant excitation does 
not necessarily mean that ow result rules out parastatistics. Just as the two- 
dimensionality of the systems is an idealization, based on the freezing out of the third 
spatial degree of freedom, so the spin degree of freedom may be frozen out. 
Moreover, even if it still has the possibility of a spin flip, this does not mean that one 
can associate with this flip a continuous internal coordinate. 

We thus find that particles with intrinsic spin realized through an intrinsic top 
coordinate can have only bose or fermi statistics. For a single spatial dimension, with a 
one-dimensional internal coordinate, codimension counting for the exchange again 
affords the same opportunity for parastatistics as the dimension two, no continuous 
internal coordinate. 

The relation between the internal coordinate (S0(3), SO(2) etc.) and the more 
common spin formalism is essentially that of projection [4, 9, lo]. 

We have extended the path integral statistics-via-homotopy arguments to the case 
of particles with spin. When that spin arises from a continuous internal variable, 
particle statistics are restricted to the usual boson or fermions. With the extra internal 
degree of freedom, this restriction applies to space dimension two as well. Only in one 
space dimension, with an internal one-dimensional degree of freedom, could parasta- 
tistics emerge. (For two-dimensional particles lacking an internal continuous degree 
of freedom, the usual anyon possibilities remain.) It should also be noted that the 
same arguments apply for any ‘internal‘ quantum number arising from internal 
continuous motion. The reasoning given for SO(d) would go through unchanged. We 
have also given a natural prescription for the identical particle coordinate space for 
which no ‘subtraction of the diagonal’ need be invoked. With this definition, it is only 
when climbing to the covering space (to produce the propagator using the path 
integral) that one excludes the so-called diagonal. If at this point one chose to drop 
back to the fundamental domain, then the self-adjoint extension techniques of [3] 
could be used. 

There are three matters, not addressed here, that come to mind. First, when is a 
degree of freedom ‘frozen’? Discussion of particles in two dimensions generally 
involve an idealization in which the possibility of motion in the thud dimension is 
effectively frozen out. Nevertheless, statements based on this approximate topology, 
for example the possibility of parastatistics, are valid. Similar questions can arise in 
discussing the Aharonov-Bohm effect, when one idealizes the impenetrable solenoid 
as simply absent, and goes on to examine the consequences of multiple connectivity. 
In that case it is the breakdown of the idealization that fixes the actual phase allowed 
by the topological idealization. These matters were taken up in [5]. A second question 
has to do with the possibility of associating a continuous internal variable with a spin 
degree of freedom. There is a long history of making such models, notably for spin 
degrees of freedom [9, lo], but this has mostly seemed a matter of personal prefer- 
ence. In the case of statistics for particles in two space dimensions, when there is an 
additional internal state variable for these particles, it will make a difference whether 
or not that internal state variable corresponds to a continuous degree of freedom, that 
difference relating to the possibility of parastatistics. The third question was alluded to 
in the opening of this article. Given an internal SO(3) variable for relativistic particles 
is there any argument that would now connect spin and statistics? 
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